Bài 6: Ôn tập chương Tổ hợp - Xác suất

MA

Chứng minh rằng: \(C^1_n+2C^2_n+3C^3_n+...+nC^n_n=n.2^{n-1}\)

KB
29 tháng 3 2022 lúc 15:02

Với k \(\in\)N* ; ta có : \(kC_n^k=k.\dfrac{n!}{\left(n-k\right)!k!}=\dfrac{n!}{\left(n-k\right)!\left(k-1\right)!}=\dfrac{n\left(n-1\right)!}{\left[n-1-\left(k-1\right)\right]!\left(k-1\right)!}=nC_{n-1}^{k-1}\)

Khi đó : \(C_n^1+2C_n^2+...+nC^n_n\)  = \(\Sigma^n_{k=1}nC^{k-1}_{n-1}\)  

\(n\left(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}\right)\)  \(=n.\left(1+1\right)^{n-1}=n.2^{n-1}\) ( đpcm )

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
HN
Xem chi tiết
TH
Xem chi tiết
SK
Xem chi tiết
TH
Xem chi tiết
AL
Xem chi tiết
DN
Xem chi tiết