Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

AN

 chứng minh rằng c= 1/4.7+1/ 7.10+ 1/10.13+...+1/37.40 < 1/3

DM
21 tháng 3 2020 lúc 16:39

Ta có: \(c=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{37\cdot40}\)

\(\Leftrightarrow3c=3\left(\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+...+\frac{1}{37\cdot40}\right)\)

\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)

Mà \(\frac{3}{4\cdot7}=\frac{1}{4}-\frac{1}{7}\)

\(\frac{3}{7\cdot10}=\frac{1}{7}-\frac{1}{10}\)

...

\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)

\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{40}\)

Ta thấy ngoại trừ hai phân số đầu tiên và cuối cùng thì tất cả các phân số còn lại đều có 1 phân số có cùng giá trị tuyệt đối nhưng ngược dấu đứng cạnh, mà tổng hai số ngược dấu bằng 0 nên ta nhóm các phân số ngược dấu thì được:

\(3c=\frac{1}{4}-\frac{1}{40}\Leftrightarrow c=\left(\frac{1}{4}-\frac{1}{40}\right)\cdot\frac{1}{3}\)

\(=\frac{9}{40}\cdot\frac{1}{3}=\frac{3}{40}=\frac{9}{120}< \frac{40}{120}\)

Mà \(\frac{40}{120}=\frac{1}{3}\Rightarrow c< \frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
NH
Xem chi tiết
OC
Xem chi tiết
KT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết