Violympic toán 9

TT

Chứng minh rằng biểu thức sau không phụ thuộc a, b, c: \(B=\dfrac{4a^2-1}{\left(a-b\right)\left(a-c\right)}+\dfrac{4b^2-1}{\left(b-c\right)\left(b-a\right)}+\dfrac{4c^2-1}{\left(c-a\right)\left(c-b\right)}\)

NT
18 tháng 6 2022 lúc 21:28

\(B=\dfrac{\left(4a^2-1\right)\left(b-c\right)-\left(4b^2-1\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{4c^2-1}{\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{4a^2b-4a^2c-b+c-4ab^2+4b^2c+a-c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{4ac^2-4bc^2-a+b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2b-4a^2c+a-b-4ab^2+4b^2c+4ac^2-4bc^2-a+b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2b-4ab^2-4a^2c+4ac^2-4bc^2+4b^2c}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2\left(b-c\right)+4bc\left(b-c\right)-4a\left(b^2-c^2\right)}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2+4bc-4a\left(b+c\right)}{\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2-4ab+4bc-4ac}{\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a\left(a-b\right)-4c\left(a-b\right)}{\left(a-c\right)\left(a-b\right)}=4\)

Bình luận (0)

Các câu hỏi tương tự
YM
Xem chi tiết
TB
Xem chi tiết
NT
Xem chi tiết
JV
Xem chi tiết
DP
Xem chi tiết
HC
Xem chi tiết
VT
Xem chi tiết
PA
Xem chi tiết
LV
Xem chi tiết