NC

chứng minh rằng biểu thức P = n^3 ( n^2 - 7 )^2 - 36n chia hết cho 7 với mọi số nguyên n

LH
20 tháng 8 2016 lúc 19:52

\(P=n^3\left(n^2-7\right)^2-36\)

\(P=n\left[n\left(n^27\right)^2-36\right]\)

\(P=n\left[\left(n^3-7n\right)^2-6^2\right]\)

\(P=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(P=\left(n-3\right)\left(x-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

M luôn luôn chia hết cho 3 , cho 5 , cho 7. Các số này đôi một nguyên tố cùng nhau nên B chia hết cho 105

Bình luận (1)

Các câu hỏi tương tự
DH
Xem chi tiết
JC
Xem chi tiết
AV
Xem chi tiết
HQ
Xem chi tiết
H24
Xem chi tiết
LY
Xem chi tiết
CN
Xem chi tiết
DH
Xem chi tiết
NO
Xem chi tiết