Chứng minh rằng abcd là 1 số tự nhiên-(a+b+c+d)chia hết cho 9
chứng minh rằng không tồn tại các số tự nhiên a,b,c,d nào mà abcd-a=9753;abcd-b=753;abcd-c=53;abcd-d=3
1.a)Chứng minh rằng nếu viết thêm vào đằng sau một số tự nhiên có hai chữ;; số gồm chính hai chữ số ấy viết theo thứ tự ngược lại thì được một số chia hết cho 11
b)Cũng chứng minh như trên nhưng đối với số tự nhiên có chữ số
2)Chứng minh rằng không tồn tại các số tự nhiên a,b,c nào mà a.b.c+a=333; a.b.c+b=335;a.b.c+c=341
3)Chứng minh rằng nếu ab=2.cd thì abcd chia hết cho 67
chứng tỏ rằng:
a) Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
b) Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4.
c) a b ¯ - b a ¯ ⋮ 9 (với a > b )
d) Nếu a b ¯ + c d ¯ ⋮ 11 thì a b c d ¯ ⋮ 11
Chứng tỏ rằng:
a, Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
b, Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4.
c, a b - b a ⋮ 9 với a>b
d, Nếu a b + c d ⋮ 11 thì a b c d ⋮ 11
Cho a , b , c, d là các số tự nhiên khác 0 . Chứng minh rằng số :
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+a+d ko phải là số tự nhiên
với a, b.c.d là cá số tự nhiên khác o thỏa mãn ab=cd chứng minh rằng A=a^n +b^n+c^n+d^n là một hợp số với mọi số tự nhiên n
cho a,b,c,d là các số tự nhiên. Biết a chia cho 6 dư 1 , b chia cho 6 dư 2 , c chia cho 6 dư 3 , d chia cho 6 dư 4 . Chứng minh rằng abcd chia hết cho 6
bài 1: hãy tìm các chữ số a,b, c,d biết a ( a là 1 số tự nhiên), cd ( cd là 1 số tự nhiên), ad ( ad là 1 số tự nhiên), abcd ( abcd là 1 số tự nhiên).
bài 2: chứng minh:
B=1+3+5+7+...+n chính phương (n là 1 số tự nhiên bất kì)