Ta có:
\(\overline{abc}+\overline{bca}+\overline{cab}\)
\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(=100a+10b+c+100b+10c+a+100c+10a+b\)
\(=\left(100a+10a+a\right)+\left(100b+10b+b\right)+\left(100c+10c+c\right)\)
\(=111a+111b+111c\)
\(=111\left(a+b+c\right)\)
\(=37.3\left(a+b+c\right)\)
Giả sử \(S\)là số chính phương thì \(S\)phải chứa số \(37\)mủ chẵn
\(\Rightarrow3\left(a+b+c\right)⋮37\)
\(\Rightarrow a+b+c⋮37\)
Điều này không xảy ra vì \(1\le a+b+c\le27\)
Vậy \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải là số chính phương (Đpcm)