Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

LL

Chứng minh rằng :

                   (a+1)(b+1)(a+c)(b+c)≥16abc

với a,b,c là những số dương tùy ý

KS
31 tháng 12 2019 lúc 16:37

Áp dụng BĐT Cauchy cho 2 só dương ta có :
\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(a+c\ge2\sqrt{ac}\)

\(b+c\ge2\sqrt{bc}\)

Nhân vế theo vế các BĐT cùng chiều trên ta được :

\(\left(a+1\right)\left(b+1\right)\left(a+c\right)\left(b+c\right)\ge16\sqrt{a^2b^2c^2}=16abc\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=a\end{cases}}\)

                                     b =c

\(\Leftrightarrow a=b=c=1\)

     Vậy \(\left(a+1\right)\left(b+1\right)\left(a+c\right)\left(b+c\right)\ge16abc\) với a,b,c dương 

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KB
Xem chi tiết
TM
Xem chi tiết
LD
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết
TQ
Xem chi tiết
HT
Xem chi tiết