xét \(A=1+14+14^2+14^3+...+14^{13}\) (*)
Tính tổng trên có \(A=\frac{14^{14}-1}{13}\) (**)
(*) hiển nhiên A là tỏng của các số tự nhiên do vậy phải tự nhiên
(**) \(A\in N\Rightarrow14^{14}-1⋮13\) +> dpcm
p/s: để tính tổng (*) có lẽ bạn biết rồi
xét \(A=1+14+14^2+14^3+...+14^{13}\) (*)
Tính tổng trên có \(A=\frac{14^{14}-1}{13}\) (**)
(*) hiển nhiên A là tỏng của các số tự nhiên do vậy phải tự nhiên
(**) \(A\in N\Rightarrow14^{14}-1⋮13\) +> dpcm
p/s: để tính tổng (*) có lẽ bạn biết rồi
Chứng minh rằng:
a) 2x + 3y chia hết cho 17 ↔ 9x + 5y chia hết cho 17
b) a + 4b chia hết cho 13 ↔ 10a + b chia hết cho 13
c) 3a + 2b chia hết cho 17↔10a + b chia hết cho 17
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
Chứng minh rằng
A, tổng của 2 số nguyên liên tiếp không chia hết cho 2
B, cho a - b chia hết cho 6 chứng minh rằng -a +1 13b chia hết cho 6
Chứng minh rằng 3.a + 18.b chia hết cho 5, biết (a+b) chia hết cho 5)
Cho (a+5b) chia hết cho 7, (a,b) thuộc N*. Chứng minh rằng (10a+b)chia hết cho 7.
Chứng minh rằng:
B = 52008 + 52007 + 52006 chia hết cho 31
1a, Cho A=1.2+2.3+3.4+...+207.208
Chứng minh rằng A ko chia hết cho 10
b, Cho B=79256+52985+a2(a thuộc N)
Chứng minh rằng B ko chia hết cho 10
Cho a,b không chia hết cho 3. Nhưng chia cho 3 có cùng số dư. Chứng minh a*b-1 chia hết cho 3
1. Cho A = 1+ 1/2+1/3+1/4+1/5+1/6
Chứng minh rằng 20A chia hết cho 7