NN

chứng minh rằng : ( 5 + 5^2 + 5^3 + 5^4 + .... + 5^60 ) chia hết cho 6 và 31

AD
7 tháng 7 2017 lúc 21:38

Ta có : (5+5x2+5x3+..+5x4+..+5x60 )

=5x(1+2+...+60)

=5x[(60+1)x60:2]

=5x61x30=5x61x5x6=>chia hết cho 6

Bình luận (0)
NH
7 tháng 7 2017 lúc 21:41

\(5+5^2+5^3+5^4+...+5^{60}\)

\(=5.\left(5+1\right)+5^3.\left(5+1\right)+....+5^{49}.\left(5+1\right)\)

\(=5.6+5^3.6+...+5^{49}.6\)

=> \(⋮6\)

\(5+5^2+5^3+...+5^{60}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{58}+5^{59}+5^{60}\right)\)

\(=5.31+5^4.31+...+5^{58}.31\)

\(\Rightarrow⋮31\)

Bình luận (0)
PT
7 tháng 7 2017 lúc 22:30

\(5+5^2+5^3+...+5^{60}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{59}+5^{60}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{59}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{59}.6\)

\(=6\left(5+5^3+...+5^{59}\right)⋮6\)

\(5+5^2+5^3+...+5^{60}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{58}+5^{59}+5^{60}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{58}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{58}.31\)

\(=31\left(5+5^4+...+5^{58}\right)⋮31\)

Bình luận (0)