\(=x^2+4y^2+4xy+x^2-6x+9+1=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Ta có: \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\forall x;y\)
=> đpcm
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(=x^2+4y^2+4xy+x^2-6x+9+1=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Ta có: \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\forall x;y\)
=> đpcm
chứng minh 2x2+4y2+4xy-6x+100>0 với mọi x,y
Chứng minh rằng:
a) x2 + x + 1 > 0 với mọi x
b)4y2 + 2y + 1 > 0 với mọi y
c) -2x2 + 6x - 10 < 0 với mọi x
Chứng minh rằng: 2x2+4y2+4xy-6x+10 >0 Với mọi số thực x và y
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
Chứng minh rằng với mọi số thực x,y ta luôn có (x+y)2
≥ 4xy
Tìm GTNN:
1. G=2x2+9y2-6xy-6x-12y+2021
2. H=2x2+4y2+4xy+4y+9
3. I= x2-4xy+5y2+10x-22y+28
4. K=x2+5y2-4xy+6x-14y+15
Chứng minh rằng:
a, x^2-4x>-5 với mọi số thực x
b, Chứng minh 2x^2+4y^2-4x-4xy+5>0 với mọi số thực x;y
P=2x2-4xy+y2 và Q=2x2+8xy+y2
giả sử x,y là 1 số nguyên.chứng minh rằng P+Q là 1 số chính phương
MỌI NGƯỜI ƠI !!! GIÚP MÌNH VỚI !!! MÌNH ĐANG CẦN GẤP!!!
Cho x,y là các số thực, chứng minh rằng :\(5x^2+2y^2+4xy-6x+2\ge0\)