H24

Chứng minh rằng 2n3 + 3n2 + n chia hết cho 6 với mọi số nguyên n

LH
3 tháng 10 2016 lúc 13:17

\(2n^3+3n^2+n\)

\(=\left(2n^3+2n^2\right)+\left(n^2+n\right)\)

\(=2n^2\left(n+1\right)+n\left(n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

n chia 3 có thể dư 1 ; 2 hoặc không dư.

Nếu không dư, tích chắc chắn chia hết cho 3

Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3

Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3

Do đó tích trên luôn chia hết cho 2 và 3

Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
MS
Xem chi tiết
HD
Xem chi tiết
PB
Xem chi tiết
NL
Xem chi tiết
HD
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
PB
Xem chi tiết
PD
Xem chi tiết