Ta có: \(27^{20}+3^{61}+9^{31}\)
\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)
\(=3^{60}+3^{61}+3^{62}\)
\(=3^{60}\cdot\left(1+3+3^2\right)\)
\(=3^{60}\cdot13⋮13\)
Vậy....
Ta có: \(27^{20}+3^{61}+9^{31}\)
\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)
\(=3^{60}+3^{61}+3^{62}\)
\(=3^{60}\cdot\left(1+3+3^2\right)\)
\(=3^{60}\cdot13⋮13\)
Vậy....
cho x, y là các số tự nhiên thỏa mãn x+4y chia hết cho 13. chứng minh rằng 10x+y chia hết cho 13
chứng minh rằng: 3^105+4^105 chia hết cho 13 nhưng ko chia hết cho 11
Cho a;b là các số tự nhiên thỏa mãn a+4b chia hết cho 13.Chứng minh rằng 10a+b cũng chia hết cho 13
Bài 1 . Cho biết a + 4b chia hết cho 13 ( a,b \(\in\)N ) . Chứng minh rằng 10a + b chia hết cho 13
chứng minh rằng : 3^21 - 3^18 chia hết 78 81^7 - 27^9 - 9^13 chia hết cho 45
Chứng minh rằng :
c. 81^7 - 27^9 - 9^13 chia hết cho 45
d. 24^54 . 54^24. 2^10 chia hết cho 7263
chứng minh rằng (3^21-9^9) chia hết cho 13
chứng minh rằng (2023^91+2023^90+2023^89) chia hết cho 13
Chứng minh rằng 138-1 chia hết cho 6954
chứng minh rằng :222 mũ 333 +333 mũ 222 chia hết cho 13