34n+1 = (34)n.3 = 81n.3
Ta có 81 = 1 (mod 10)
=> 81n = 1n (mod 10)
=> 81n .3 = 3 (mod 10)
=> 34n+1 = 3 (mod 10) Hay 34n+1 chia cho 10 dư 3 => 34n+1 = 10.k + 3
Vậy \(2^{3^{4n+1}}=2^{10k+3}=\left(2^{10}\right)^k.2^3=1024^k.8\)
Ta có 1024 = 1(mod 11) => 1024k = 1(mod 11) => \(2^{3^{4n+1}}=1024^k.8\) = 8 (mod 11)
=> \(2^{3^{4n+1}}+3\) = (8 + 3) (mod 11) = 11 (mod 11) => \(2^{3^{4n+1}}+3\) chia hết cho 11