CMR: \(\frac{1}{x}+\frac{1}{y}\le2\) biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0
CMR: \(\frac{1}{x}+\frac{1}{y}\le2\) biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0
Cho x3+y3 +3(x2+y2) +4(x+y) + 4 =0. Tìm GTLN của M= 1/x+1/y
Chứng minh: x 3 + y 3 + z 3 - 3 x y z = 1 / 2 . x + y + z x - y 2 + y - z 2 + z - x 2
Từ đó chứng tỏ: Với ba số x, y, z không âm thì x 3 + y 3 + z 3 3 ≥ x y z
Cho x > 0 , y > 0 , z > 0 x y z = 1 . Chứng minh rằng 1 x + y + 1 + 1 y + z + 1 + 1 z + x + 1 ≤ 1
Cho x, y là hai số thực thỏa mãn x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1. Chứng minh rằng x 1 + y 2 + y 1 + x 2 = 0.
a)Chứng minh x3 + y3 ≥xy(x+y) với x,y≥0
b)Cho x,y,z>0 thỏa mãn xyz=1
CMR:\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\le1\)
chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}\le-2\) biết \(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\) và xy>0
Biết hệ phương trình x 3 + y 3 = 19 x + y 8 + x y = 2 có hai nghiệm ( x 1 ; y 1 ) ; ( x 2 ; y 2 ) . Tổng x 1 + x 2 bằng?
A. −1
B. 2
C. 1
D. 0
Chứng minh: x 3 + y 3 + z 3 - 3 x y z = 1 / 2 . x + y + z x - y 2 + y - z 2 + z - x 2
Từ đó chứng tỏ: Với ba số a, b, c không âm thì x 3 + y 3 + z 3 3 ≥ x y z
(Bất đẳng thức Cô-si cho ba số không âm)
Dấu đẳng thức xảy ra khi ba số a, b, c bằng nhau.
chứng minh rằng \(\frac{1}{x}\)+\(\frac{1}{y}\)<= \(-\)2 biết rằng xy>0 vàx3+y3+3(x2+y2)+4(x+y)+4=0