Ta sẽ chứng minh \(\left(17^n+2\right)\left(17^n+1\right)\)sẽ chia hết cho \(2\)và \(3\).
Do \(17^n\)lẻ nên \(17^n+1\)chẵn nên \(17^n+1\)chia hết cho \(2\).
Có \(17^n,17^n+1,17^n+2\)là ba số tự nhiên liên tiếp nên một trong ba số đó phải chia hết cho \(3\).
Mà \(17⋮̸3\Rightarrow17^n⋮̸3\)suy ra \(17^n+1\)hoặc \(17^n+2\)chia hết cho \(3\)với mọi \(n\).
Do đó \(\left(17^n+2\right)\left(17^n+1\right)⋮6\).