Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NN

chung minh rang 1\2 mu 2+1\3 mu 2+1\4 mu2+...+1\100 mu 2 < 1

NN
18 tháng 2 2020 lúc 16:56

ai lam day du dau tien minh se k cho nha

Bình luận (0)
 Khách vãng lai đã xóa
NN
18 tháng 2 2020 lúc 16:57

minh can gap lam

Bình luận (0)
 Khách vãng lai đã xóa
.
18 tháng 2 2020 lúc 17:06

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

             ...

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\).

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MN
Xem chi tiết
PQ
Xem chi tiết
TH
Xem chi tiết
TM
Xem chi tiết
CL
Xem chi tiết
LU
Xem chi tiết
TT
Xem chi tiết
LG
Xem chi tiết
H24
Xem chi tiết