AN

chứng minh ps sau tối giản

 

a,A=12n+1/30n+2      b,B=14n+17/21n+25

VH
19 tháng 3 2018 lúc 20:14

a. A= \(\frac{12n+1}{30n+2}\)

Gọi d là ước chung của 12n +1 và 30n +2

\(\Rightarrow\)12n + 1 \(⋮\)d => 5 (12n + 1) \(⋮\)d    => 60n + 5  \(⋮\)d

\(\Rightarrow\)30n+2 \(⋮\)d = > 2 ( 30n + 2) \(⋮\)d =>   60n + 4\(⋮\)d

\(\Rightarrow\)(60n + 5) - 60n + 4 \(⋮\)d

\(\Rightarrow\)\(⋮\)d

\(\Rightarrow\)d= 1

\(\Rightarrow\)ƯCLN( 12n+ 1; 30n+2)

Vậy 12n+1/ 30n+2 là phân số tối giản

b. B= \(\frac{14n+17}{21n+25}\)

gọi d là ước chung của 14n+ 17 và 21n + 25

=> 14n+ 7 \(⋮\)d => 3(14n+17) \(⋮\)d => 42n + 51 \(⋮\)d

=> 21n+ 25 \(⋮\)d =.> 2(21n + 5) \(⋮\)d =.> 42n +  50 \(⋮\)d

=.> 42n + 51 - (42n + 50) \(⋮\)d

=> 1 \(⋮\)d

=> d= 1

vậy 14n + 17/  21n + 25 là phân số tối giản

Bình luận (0)
VH
19 tháng 3 2018 lúc 20:29

có chỗ ( 60n +5) - 60n + 4 là sai ấy nhé!

đúng là 60n + 5 - ( 60n + 4 ) mới đúng

nhớ k cho mik nha

Bình luận (0)
LG
14 tháng 7 2018 lúc 14:06

a

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản 

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
Xem chi tiết
BH
Xem chi tiết
DD
Xem chi tiết
MA
Xem chi tiết
VD
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
VN
Xem chi tiết