VL

Chứng minh phương trình: x^6 - 2x^5 + 5x^4 - 5x^3 + 6x^2 - 3x + 2 = 0 vô nghiệm

H24
14 tháng 2 2020 lúc 9:59

Ta có:

\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)

\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)

Mà:

\(x^2+1>0\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vậy pt vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
PH
14 tháng 2 2020 lúc 10:17

Trl

-Bạn kia  làm đúng r nhé !~ :>

Học tốt 

nhé bạn ~

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MT
Xem chi tiết
DQ
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
MK
Xem chi tiết
HP
Xem chi tiết
Xem chi tiết
ND
Xem chi tiết