PB

Chứng minh phương trình luôn  x n   +   a 1 x n - 1   +   a 2 x n - 2   +   . . .   +   a n - 1 x   +   a n   =   0 có nghiệm với n là số tự nhiên lẻ.

CT
14 tháng 7 2018 lúc 13:57

Hàm số  f ( x )   =   x n   +   a 1 x n - 1   +   a 2 x n - 2   +   . . .   +   a n - 1 x   +   a n   =   0  xác định trên R

- Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên với dãy số ( x n ) bất kì mà x n   →   + ∞ ta luôn có lim f ( x n )   =   + ∞

Do đó, f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì f ( x n )   >   1 kể từ một số hạng nào đó trở đi.

Nói cách khác, luôn tồn tại số a sao cho f(a) > 1 (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên với dãy số ( x n ) bất kì mà x n   →   − ∞ ta luôn có lim f ( x n )   =   − ∞ hay l i m [ − f ( x n ) ]   =   + ∞

Do đó, − f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì − f ( x n )   >   1 kể từ số hạng nào đó trở đi. Nói cách khác, luôn tồn tại b sao cho −f(b) > 1 hay f(b) < −1 (2)

- Từ (1) và (2) suy ra f(a).f(b) < 0

Mặt khác, f(x) hàm đa thức liên tục trên R nên liên tục trên [a; b]

Do đó, phương trình f(x) = 0 luôn có nghiệm.

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
TH
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết