Đặt (2n - 1;2n + 3) = d
=> \(\hept{\begin{cases}2n-1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n-1\right)⋮d\)
=> \(2n+3-2n+1⋮d\)
=> \(4⋮d\)
=> \(d\inƯ\left(4\right)\)
=> \(d\in\left\{1;2;4\right\}\)
Lại có : \(\hept{\begin{cases}2n-1\\2n+3\end{cases}\text{là 2 số lẻ }\Rightarrow\left(2n-1,2n+3\right)\ne d\in\left\{2;4\right\}\Leftrightarrow\hept{\begin{cases}2n-1\text{ không chia hết cho 2;4}\\2n+3\text{ không chia hết cho 2;4}\end{cases}}}\)
\(\Rightarrow d=1\)
\(\Rightarrow\frac{2n-1}{2n+3}\text{ là phân số tối giản với mọi }n\inℤ\)(đpcm)