Vì p và q là 2 số nguyên tố lớn hơn 3
\(\Rightarrow\) p2 và q2 chia cho 3 đều dư 1
\(\Rightarrow p^2-q^2⋮3\)
Vì p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 2
\(\Rightarrow\) p có dạng 2m+1
Ta có:
\(p^2=\left(2m+1\right)^2\)
\(p^2=\left(2m\right)^2+2.2m.1+1\)
\(p^2=4m^2+4m+1\)
\(p^2=4m\left(m+1\right)+1\)
Vì m(m+1) là tích của 2 số tự nhiên liên tiếp
\(\Rightarrow m\left(m+1\right)⋮2\)
\(\Rightarrow4m\left(m+1\right)⋮8\)
\(\Rightarrow\) 4m(m+1) + 1 chia cho 8 dư 1
\(\Rightarrow\) p2 chia cho 8 dư 1
Tương tự ta có q2 chia cho 8 dư 1
\(\Rightarrow p^2-q^2⋮8\)
Mà \(\left(8,3\right)=1;8.3=24\)
\(\Rightarrow p^2-q^2⋮24\)
Vì p,q là 2 số nguyên tố > 3 nên p,q đều lẻ => p^2,q^2 đều là 2 số chính phương lẻ
=> p^2,q^2 đều chia 8 dư 1
=> p^2-q^2 chia hết cho 8 (1)
Lại có : p,q là số nguyên tố > 3 nên p,q đều ko chia hết cho 3 => p^2,q^2 đều chia 3 dư 1
=> p^2-q^2 chia hết cho 3 (2)
Từ (1) và (2) => p^2-q^2 chia hết cho 24 ( vì 3 và 8 là 2 số nguyên tố cùng nhau )
k mk nha