GL

Chứng minh nếu \(p\) và \(8p^2+1\)là hai số nguyên tố lẻ thì \(8p^2+2p+1\)là số nguyên tố

H24
11 tháng 11 2019 lúc 22:49

Bài này dễ thôi bạn !!!

Xét mọi p nguyên tố lẻ và p > 3=> p^2:3 dư 1 do 1 SCP : 3 dư 0 hoặc 1 và SCP đó không chia hết 3 do là SNT>3

=> 8p^2+1 chia hết cho 3 và > 3 do p > 3 => Là hợp số => Vô lí => Loại

Xét p=3 => 8p^2+2p+1=79 là SNT và 8p^2+1=73 là SNT lẻ (TMĐK)

=> ĐPCM.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
CC
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
HP
Xem chi tiết