Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho các số thực a, b , c thỏa mãn a+b+c >0; ab+bc+ca>0 và abc>0, CMR a,b,c là các số dương
câu 1
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:\(\frac{a+b}{2}\ge\sqrt{ab}\)
b) Cho a, b, c > 0. Chứng minh rằng:\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
chứng minh rằng nếu hai phương trình:x^2+ax+b=0 và x^2+cx+b=0 có nghiệm chung thì: (b-d)^2+(a-c)(ad-bc)=0
Cho các số a,b,c thỏa mãn abc>0, ab+bc+ac >0, a+b+c>0
Chứng minh rằng a+b+c là các số dương
cho a,b,c>0, chứng minh:
1)ab+bc+ca >= a√ab+b√ca+c√ab
2)a^2+b^2+c^2 >= a√ab+b√ca+c√ab
1) Cho a, b, c>0 và a+b+c=3. Chứng minh rằng: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
2) Cho a, b, c >0 thỏa mãn: ab+ac+bc+abc=4. Chứng minh rằng: \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le3\)
cho a,b,c > 0; thỏa mãn a+b+c =1
chứng minh ab+bc+ca-abc<= 8/27
Chứng minh rằng nếu 0\(\le\)a,b,c\(\le\)1 thì 1+ab+bc+ca\(\ge\) a+b+c
cho a,b,c>=0, a+b+c=1. chứng minh rằng (a-bc)/(a+bc)+(b-ca)/(b+ca)+(c-ab)/(c+ab)<=3/2