AN

chứng minh: n4+6n3+23n2+18n chia hết cho 24 với mọi n thuộc N

NH
16 tháng 6 2015 lúc 8:30

\(=n^4+2n^3+4n^3+8n^2+15n^2+30n-12n-24+24=\left(n+2\right)\left(n^3+4n^2+15n-12\right)+24\)

\(=\left(n+2\right)\left(n^3-3n^2+7n^2-21n+36n-12\right)+24=\left(n+2\right)\left(n-3\right)\left(n^2+7n+12\right)+24\)

\(=\left(n+2\right)\left(n-3\right)\left(n^2+3n+4n+12\right)+24=\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+1-4\right)+24\)

\(=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)-4\left(n+2\right)\left(n+3\right)\left(n+4\right)+24\)

(n+1)(n+2)(n+3)(n+4) là tích 4 số tự nhiên liên tiếp => chia hết cho 1.2.3.4=24

(n+2)(n+3)(n+4) là tích 3 số tự nhiên liên tiếp => chia hết cho 1.2.3=6 => 4(n+2)(n+3)(n+4) chia hết cho 4.6=24

biểu thức vừa thu gọn là tổng hiệu của các số chia hết cho 24 => chia hết cho 24

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
VL
Xem chi tiết
NA
Xem chi tiết
TS
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
HN
Xem chi tiết