Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n,(n+1),(n+2) là 3 số lên tiếp nên chúng luôn chia hết cho 6
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n,(n+1),(n+2) là 3 số lên tiếp nên chúng luôn chia hết cho 6
Chứng minh rằng n thuộc Z
\(a,\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
\(b,\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi nguyên n.
Chứng minh:
\(\left[n^2\left(n+1\right)+2n\left(n+1\right)\right]\) chia hết cho 6 với mọi \(n\in Z\)
a/ Chứng minh ới mọi số nguyên \(n\)thì: \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
b/ Chứng minh với mọi số nguyên \(n\)thì: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)chia hết cho 2
Chứng minh :
\(M=n^2\left(n+1\right)+2n\left(n+1\right)\) với \(n\in N\) chia hết cho 6
Cho B=\(\left(n^2+2n+5\right)^3-\left(n+1\right)^2+2012\)
chứng minh B chia hết cho 6 với mọi số tự nhiên n
Chứng minh rằng \(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)chia hết cho 3 với mọi n
CMR với mọi số nguyên n thì:
a/ \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
b/ \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
c/ \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24