m.n giúp mk bài này nha! Thanks m.n
Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng tồn tại số tự nhiên n gồm không quá p chữ số 1 (n không có chữ số nào khác 1) và n chia hết cho p.
Tìm số tự nhiên n biết rằng trong 3 mệnh đề sau có 2 mệnh đề đúng và một mệnh đề sai
1) 1/n có chữ số tận cùng là 2
2) n+20 là một số chính phương
3) n-69 là một số chính phương
ai giải đc cho 3 tk!
Tìm số tự nhiên n biết rằng trong 3 mệnh đề sau có 2 mệnh đề đúng và một mệnh đề sai
1) 1/n có chữ số tận cùng là 2
2) n+20 là một số chính phương
3) n-69 là một số chính phương
Bài 1: Cho 8 số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó, tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7
Bài 2: Cho 3 chữ số khác nhau và khác 0. Lập tất cả các số tự nhiên có 3 chữ số gồm cả 3 chứ số ấy. Chứng minh rằng tổng của chúng chia hết cho 6 và 37
Bài 3: Một học sinh viết các số tự nhiên từ 1 đến abc(có gạch trên đầu). Bạn đó phải viết tất cả m chữ số. Biết rằng m chia hết cho abc, tìm abc
Mọi người chi tiết hộ nhé, tks
Cho 7 số tự nhiên a1,a2,a3,a4,a5,a6,a7 .Chứng minh rằng : tồn tại một số chia hết cho 7 hoặc tồn tại tổng một số số liên tiếp trong dãy chia hết cho 7
1,với 19 số tự nhiên liên tiếp bất kì,có hay không 1 số có tổng các chữ số chia hết cho 10
2,chứng minh (n+1)(n+2)...2n chia hết cho 2n. tìm thương của phép chia
3,cho a,b thuộc N sao cho a2+b2 chia hết cho ab. Tính A= \(\frac{a^2+b^2}{ab}\)
4,có hay không số tự nhiên n để 5n+1 chia hết cho 71995
5,Chứng minh răng tồn tại các số nguyên dương x,y,z thỏa mãn đẳng thức:xx+yy=zp,với p là 1 số nguyên tố lẻ
6,cho N là số chẵn không chia hết cho 10.hãy tìm:
a,2 chữ số tận cùng của N20
b,3 chữ số tận cùng của N200
7,số dư của phép chia \(14^{14^{14^{14}}}:100000\)
8.có hay không số tự nhiên k sao cho 2003k có chữ số tận cùng là 0001
chứng minh rằng tồn tại số tự nhiên gồm toàn các chữ số 1 và 2 chia hết cho 23
chứng minh rằng luôn tồn tại số tự nhiên được viết bởi chỉ các chữ số 0 và các chữ số 7 mà số đó chia hết cho 1995
chứng minh ( toán đồng dư )
a, 2n+1 không chia hết cho 7 với mọi số tự nhiên n
b, 9n+1 không chia hết cho 100 với mọi số tự nhiên n