Gọi \(\left(2n+1,n\right)\) là \(d\).
Vì \(\left(2n+1,n\right)\) là \(d\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\n⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-n⋮d\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\left(2n+1,n\right)=1\)
\(\Rightarrow2n+1\)và \(n\)là 2 SNT cùng nhau
\(\Rightarrow\)Phân số \(\frac{2n+1}{n}\)tối giản (đpcm)
Đặt: ( 2n + 1 ; n ) = d
=> ( 2n + 1 - n ; n ) = d
=> (n + 1; n ) = d
=> ( n + 1 - n ; n ) = d
=> (1; n ) = d
=> d = 1
Như vậy: ( 2n + 1; n ) = 1 => 2n + 1; n là hai số nguyên tố cùng nhau
=> M là phân số tối giản