\(a^4+b^4+ab\left(a+b\right)^2\ge2a^2b^2\)
CHỨNG MINH VỚI MỌI A,B thuộc R
Chứng minh rằng biểu thức sau không phụ thuộc a,b\(\left[tan\left(90-a\right)-cot\left(90+a\right)\right]^2-\left[cot\left(180+a\right)+cot\left(270+a\right)\right]^2\)
Cho a,b,c là các số thực thuộc đoạn [0;1]. Chứng minh rằng:
\(\sqrt{a^3b^3c^3}+\sqrt{\left(1-a^2\right)\left(1-b^2\right)\left(1-c^2\right)\left(1-abc\right)}\le1\)
Chứng minh rằng nếu a, b là các số thực thì \(\left[a+b\right]\ge\left[a\right]+\left[b\right]\)
Giúp mình với mọi người, mình biết cách chứng minh rồi nhưng chưa hiểu lắm, mọi người làm lúc nào cũng được.
Chứng minh rằng: \(\frac{a^n+b^n+c^n}{3}\ge\left(\frac{a+b+c}{3}\right)^n,\forall a,b,c>0;n\in N\)
Giúp mình với ạ!
Cho trước a, b là hai số thực phân biệt. Xét tập X =\(\left\{x=an+b|n\inℤ\right\}\) . Chứng minh rằng ba số 1; 2; \(\sqrt{3}\) không đồng thời thuộc X.
Cho 2 tập A, B không giao nhau. Chứng minh rằng \(\left|A\cup B\right|=\left|A\right|+\left|B\right|\)
(Ở đây kí hiệu \(\left|X\right|\) có nghĩa là số phần tử của tập hữu hạn X)
Chứng minh rằng
\(a\left(\frac{a}{2}+\frac{1}{bc}\right)+b\left(\frac{b}{2}+\frac{1}{ca}\right)+c\left(\frac{c}{2}+\frac{1}{ab}\right)\ge\frac{9}{2} \)
\(với\forall a,b,c>0\)
Cho tam giác ABC. Chứng minh \(\dfrac{\sin^3\dfrac{B}{2}}{\cos\left(\dfrac{A+C}{2}\right)}\)+ \(\dfrac{\cos^3\dfrac{B}{2}}{sin\left(\dfrac{A+C}{2}\right)}\)-\(\dfrac{\cos\left(A-C\right)}{\sin B}\).\(\tan B=2\)