11n+2 + 122n+1
= 11n.112 + 122n.12
= 11n.121 + 144n.12
= 11n.121 + 12.11n + 144n.12 - 12.11n
= 11n.(121 + 12) + 12.(144n - 11n)
= 11n.133 + 12.(144 - 11).(144n-1 + 144n-2.11 + ... + 144.11n-2 + 11n-1)
= 11n.133 + 12.133.k chia hết cho 133 (đpcm)
11n+2 + 122n+1
= 11n.112 + 122n.12
= 11n.121 + 144n.12
= 11n.121 + 12.11n + 144n.12 - 12.11n
= 11n.(121 + 12) + 12.(144n - 11n)
= 11n.133 + 12.(144 - 11).(144n-1 + 144n-2.11 + ... + 144.11n-2 + 11n-1)
= 11n.133 + 12.133.k chia hết cho 133 (đpcm)
Chứng minh: \(\left(2^{2^{2n}}+10\right)⋮13\) (n\(\in\) N)
Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, ta có bất đẳng thức:
\(\frac{x^n\left(x^{n+1}+1\right)}{x^n+1}\le\left(\frac{x+1}{2}\right)^{2n+1}\)
Chứng minh: \(\forall m,n,p,q\) ta đều có:
\(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)
Chứng minh với mọi a , b , c > 0 ta luôn có :
\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{27}{2\left(a+b+c\right)^2}\)
cho ba số a,b,c là các số dương thoả mãn abc=1.chứng minh rằng:\(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+c+1\right)^2}+\dfrac{c}{\left(ac +c+1\right)^2}\ge\dfrac{1}{a+b+c}\)
1)
a)giải pt :\(x\sqrt{3-2x}=3x^2-6x+6\)
b)giải hpt:\(\left\{\begin{matrix}x^3+2xy^2+12y=0\\x^3+8y^2=12\end{matrix}\right.\)
c)cho n nguyên dương .CMR\(2^{2n+3}+2^{3n-1}+1\)là hợp số
Cho phương trình: \(x^2+x\left(m+1\right)+m=2\)
1) Chứng minh rằng với mọi m phương trình luôn có 2 nghiệm phân biệt
2) Tìm m sao cho phương trình có 2 nghiệm thỏa mãn: \(\dfrac{2x_1-1}{x_2}+\dfrac{2x_2-1}{x_1}=x_1x_2+\dfrac{55}{x_1x_2}\)
Cho n số thực dương \(a_1,a_2,..,a_n\) có tổng bằng 1
Chứng minh rằng \(\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\)
Cho \(n\in N\) và n>1
Chứng minh: \(A=n^4+4^n\) là hợp số