trong sgk toán 7 bài định lý hình học có giải nhaa
- tập 1
Gọi hai góc kề bù là góc xOz và góc zOy.
On là tia phân giác góc xOz
Om là tia phân giác góc zOy.
Vì On là tia phân giác góc xOz
=> Góc zOn = \(\frac{1}{2}\widehat{xOz}\)( tính chất tia phân giác ) ( 1 )
Vì Om là tia phân giác góc zOy
=> \(\widehat{zOm}=\frac{1}{2}\widehat{zOy}\)( tính chất tia phân giác ) ( 2 )
Cộng vế với vế của (1), (2)
=> \(\widehat{nOz}+\widehat{zOm}=\frac{1}{2}\left(\widehat{xOz}+\widehat{zOy}\right)\)
=> \(\widehat{nOm}=\frac{1}{2}\widehat{xOy}=\frac{180^o}{2}=90^o\)
=> Om vuông góc với On ( Hai tia phân giác của hai góc kề bù vuông góc với nhau )
Ta có
y0t = 1/2 x0y ( ot là p/g) (1)
y0t' = 1/2 y0x ( 0t' là p/g) (2)
x0y + y0z = 180 độ ( kề bù)
Từ (1) và (2) => y0t + yot' = 1/2 ( xoy+ y0z) = 1/2 .180 = 90 độ
=> t0t' = 90 độ
hay 0t vuông góc với 0t' => ĐPCM
Ta có : Ot là tia phân giác của góc xOy
: Om là tia phân giác của góc yOz
mà \(\widehat{xOy}\) và \(\widehat{yOz}\)là 2 góc kề bù ( vì tia Ox là tia đối của tia Oz )
\(\Rightarrow\widehat{mOt}=90^o\)
\(\Rightarrow Om\perp Ot\)
Vậy hai tia phân giác của 2 góc kề bù thì vuông góc với nhau
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.