Bài 1: Cho a, b cùng dấu. Chứng minh rằng: \(\left(\frac{a^2+b^2}{2}\right)^3\le\left(\frac{a^3+b^3}{2}\right)^2\)
Bài 2: Cho \(a^2+b^2\ne0\). Chứng minh rằng: \(\frac{2ab}{a^2+4b^2}+\frac{b^2}{3a^2+2b^2}\le\frac{3}{5}\)
Bài 3: Cho a, b > 0. Chứng minh rằng: \(\frac{a}{b^2}+\frac{b}{a^2}+\frac{16}{a+b}\ge5\left(\frac{1}{a}+\frac{1}{b}\right)\)
Bài 4: Cho a, b>0. Chứng minh rằng: \(\frac{3a^2+2ab+3b^2}{a+b}\ge2\sqrt{2\left(a^2+b^2\right)}\)
TÌm giá trị biểu thức \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(10a^2-3b^2+5ab=0\)và \(9a^2-b^2\ne0\)
Cho a,b là các số dương thỏa mãn \(a+b+ab=3\)
Chứng minh rằng:\(\frac{3a}{b+1}+\frac{3b}{a+1}+\frac{ab}{a+b}\le a^2+b^2+\frac{3}{2}\)
1. Cho \(a,b>0\). Chứng minh \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
2. Cho \(a,b,c\in\left[0;1\right].\)Chứng minh \(a\left(1-b\right)+b\left(1-c\right)+c\left(1-a\right)\le1\)
3. Cho \(a,b,c>0\). Chứng minh \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)
4. Cho \(a,b,c>0\)thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\). Chứng minh \(abc\le\frac{1}{8}\)
5. Cho \(x,y\ge0\)thỏa mãn \(x^3+y^3=2\). Chứng minh \(x^2+y^2\le2\)
6. Cho \(a,b,c\ne0\). Chứng minh \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\le\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\)
7. Cho \(a,b,c\)là độ dài ba cạnh của tam giác. Chứng minh \(a^2b+b^2c+c^2a+a^2c+b^2a-a^3-b^3-c^3-2abc>0\)
8. Cho \(a,b,c>0\). Chứng minh \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
Cho a,b là các số dương. Chứng minh rằng: \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
chứng minh đẳng thức sau
a. \(\dfrac{3y}{4}=\dfrac{6xy}{8x}\left(x\ne0\right)\)
b. \(\dfrac{x+y}{3a}=\dfrac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}\)
Bài 1: Cho a,b>0. Chứng minh \(\sqrt[3]{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}< \sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\)
Bài 2: Cho a,b>0. Chứng minh \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\ge\frac{2\sqrt{2}}{\sqrt{a+b}}\)
Bài 3: Cho a,b,c>0. Chứng minh \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
Chứng Minh rằng :\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\)
Với \(\forall a,b,c>0\)
Chứng minh rằng \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 2-\frac{1}{n}\forall n\in N;n>1\)