PB

Chứng minh định lí đảo của định lí về góc tạo bởi tia tiếp tuyến và dây cung , cụ thể là: Nếu góc BAx (với đỉnh A nằm trên đường tròn, một cạnh chứa dây cung AB), có số đo bằng nửa số đo của cung AB căng dây đó và cung này nằm bên trong góc đó thì cạnh Ax là một tia tiếp tuyến của đường tròn(h.29).

Gợi ý: có thể chứng minh trực tiếp hoặc chứng minh bằng phản chứng.

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Hình 29

CT
2 tháng 3 2018 lúc 6:25

Cách 1: (Chứng minh trực tiếp)

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Gọi C là chân đường cao hạ từ O xuống AB.

ΔOAB có OA = OB = R nên tam giác này cân tại O

⇒ đường cao OC đồng thời là phân giác

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách 2: (Chứng minh phản chứng)

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giả sử Ax không phải tiếp tuyến của (O)

⇒ Ax là cắt (O) tại C khác A.

+ C nằm trên cung nhỏ AB

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ C nằm trên cung lớn AB

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mà Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc ngoài của tam giác BAC

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy giả sử là sai ⇒ Ax là tiếp tuyến của đường tròn tâm O.

Kiến thức áp dụng

+ Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết