NH

chứng minh đẳng thức: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)= -2

NM
20 tháng 10 2021 lúc 16:25

\(VT=\left[\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right]\cdot\left(\sqrt{7}-\sqrt{5}\right)\\ =\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\\ =-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2=VP\)

Bình luận (0)
H24
20 tháng 10 2021 lúc 16:26

\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2\)

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
HL
Xem chi tiết
AK
Xem chi tiết
H24
Xem chi tiết
MH
Xem chi tiết
CP
Xem chi tiết
YT
Xem chi tiết
LL
Xem chi tiết
LC
Xem chi tiết