Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Các bạn giải giúp mình nha!
Câu 1: Tìm tất cả các số nguyên x=>y=>z=>0 sao cho:
xyz + xy+ yz + xz +x+y+z=2011
Câu 2 Giải phương trình :
4(x^2+2)^2 = 25(x^3+1)
Câu 3 Tìm Max ,Min của
P= 2x^2 - xy - y^2
Với x, y thỏa mãn: x^2 + 2xy+ 3y^2=4
Câu 4 Cho a,b,c là độ dài ba cạnh của tam giác chứng minh:
1/(a^2+bc) + 1/(b^2+ac)+1/(c^2+ab) <= (a+b+c)/(2abc)
Câu 5 Tìm các số hữu tỉ x,y thỏa mãn:
x(căn bậc hai của(2011) + căn bậc hai của(2010)) + y(căn bậc hai của(2011) - căn bậc hai của(2010)) = Căn bậc hai của(2011^3) + Căn bậc hai của(2010^3)
Chứng minh rằng nếu căn bậc hai (b+1) + căn bậc hai (c+1)=2*căn bậc hai(a+1) thì b+c lớn hơn hoặc bằng 2*a
cho a, b, c khác 0 và (1/a)+(1/b) =(1/c).
chứng minh: A = căn(a^2 + b^2 + c^2 ) là số hữu tỉ
Chứng minh Căn (1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x^3+y^3=2x^2*y^2
cho a,b,c là những số hữu tỉ khác 0 và a=b+c
chứng minh rằng : \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
a,b,c là các số hữu tỉ sao cho 1/a+1/b=1/c. Chứng minh A=\(\sqrt{a^2+b^2+c^2}\) là số hữu tỉ+
Bài 1 :
a) Cho 3 số hữu tỉ a,b,c thoả mãn : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\). Chứng minh rằng : \(A\text{=}\sqrt{a^2+b^2+c^2}\) là số hữu tỉ.
b) Cho 3 số x,y,z đôi một khác nhau . Chứng minh rằng : \(B\text{=}\sqrt{\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}}\) là một số hữu tỉ.
(căn bậc hai(a + 2)/(a+2*căn bậc hai(a + 1)) -căn bậc hai(a -2)/(a-1)) * (căn bậc hai(a + 1)/căn bậc hai(a))
Cho 2 số hữu tỉ a,b thỏa a3b +ab3 + 2a2b2 +2a +2b +1 =0. Chứng minh: 1-ab là bình phương của 1 số hữu tỉ