LP

Chứng minh các số có dạng \(\sqrt{224999...91000...09}\)(có n-2 chữ số 9 nằm giữa 4 và 1; n chữ số 0) đều là các số tự nhiên.

LP
11 tháng 3 2022 lúc 18:16

Công bố:

Ta cần chứng minh số có dạng \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) đều là các số chính phương.

Thật vậy, ta có \(224999...91000...09=224999...91000...000+9=224999...90000...000+10^{n+1}+9\)

           n-2 cs 9      n cs 0                      n-2 cs 9         n+1 cs 0                            n-2 cs 9        n+2 cs 0 

\(=224999...9.10^{n+2}+10^{n+1}+9=\left(224000...00+999...9\right).10^{n+2}+10^{n+1}+9\)

                 n-2 cs 9                                                                 n-2 cs 0             n-2 cs 9

\(=\left(224.10^{n-2}+10^{n-2}-1\right).10^{n+2}+10^{n+1}+9=224.10^{2n}+10^{2n}-10^{n+2}+10^{n+1}+9\)\(=225.10^{2n}-100.10^n+10.10^n+9=\left(15.10^n\right)^2-90.10^n+9\)\(=\left(15.10^n\right)^2-2.15.10^n.3+3^2=\left(15.10^n-3\right)^2\)là số chính phương.

Vậy \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) là số chính phương.

\(\Rightarrowđpcm\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DV
Xem chi tiết
DV
Xem chi tiết
WN
Xem chi tiết
TT
Xem chi tiết
TD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
TD
Xem chi tiết