MC

Chứng minh các phân số sau tối giản với mọi số tự nhiên n:

\(\frac{12n+1}{30n+2}\)

GIẢI ĐY62 ĐỦ , CHI TIẾT CHO MÌNH NHA THANKS

B6
26 tháng 12 2015 lúc 18:57

Đặt UCLN(12n + 1 ; 30n + 2) = d

12n + 1 chia hết cho d => 60n + 5 chia hết cho d

30n + 2 chia hết cho d =>  60n + 4 chia hết cho d

UCLN(60n + 5 ; 60n + 4) = 1

=> d = 1

Vậy 12n + 1 / 30n + 2 luôn tối giản 

Bình luận (0)
NM
26 tháng 12 2015 lúc 19:04

Đặt d là ƯCLN(12n+1,30n+2)=>12n+1,30n+2 đều chia hết cho d=>60n+5 và 60n+4 chia hết cho d.Vì vậy nên ta có:

(60n+5)-(60n+4) chia hết cho d

=60n+5-60n-4 chia hết cho d

 =1 chia hết cho d

=> d=1

Vì d=1 nên 12n+1,30n+2 là 2 số nguyên tố cùng nhau=>phân số trên là phân số tối giản(đpcm)

Bình luận (0)