Giả sử ƯCLN của (5n + 1) và (6n + 1) là d, ta cần chứng minh d = 1.
Do d là ƯCLN của (5n + 1) và (6n + 1) nên \(\hept{\begin{cases}5n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow6\left(5n+1\right)-5\left(6n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{5n+1}{6n+1}\)là phân số tối giản.
\(\text{Gọi ƯCLN(5n+1;6n+1) = d}\)
\(\Rightarrow5n+1⋮d\)và \(6n+1⋮d\)
\(\Rightarrow\left(6n+1\right)-\left(5n+1\right)⋮d\)
\(\Rightarrow n⋮d\)
\(\Rightarrow5n⋮d\)
Mà \(5n+1⋮d\)
\(\Rightarrow5n+1-5n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)5n+1 và 6n+1 nguyên tố cùng nhau
=> p/s đó tối giản