PB

Chứng minh các định lí sau:

a) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền

b) Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông.

CT
24 tháng 3 2019 lúc 14:55

Để học tốt Toán 9 | Giải bài tập Toán 9

Hình a) + b)

a) Xét tam giác ABC vuông tại A. Gọi O là trung điểm của BC.

Ta có AO là đường trung tuyến ứng với cạnh huyền nên OA = OB = OC.

=> O là tâm của đường tròn đi qua A, B, C.

Vậy tâm của đường tròn ngoại tiếp ΔABC là trung điểm của cạnh huyền BC. (đpcm)

b) Xét tam giác ABC nội tiếp đường tròn (O) đường kính BC, ta có:

        OA = OB = OC

Tam giác ABC có đường trung tuyến AO bằng nửa cạnh BC nên suy ra tam giác ABC vuông tại A. (đpcm)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
VT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết