\(sin^6a+cos^6a=\left(sin^2a\right)^3+\left(cos^2a\right)^3\)
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^6a+cos^6a=\left(sin^2a\right)^3+\left(cos^2a\right)^3\)
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
Chứng minh hằng đẳng thức sau:
\(sin^4a+cos^4a-sin^6a-cos^6a=sin^2a.cos^2a\)
@) Chứng minh đẳng thức \(\frac{2sin^2\left(x+\frac{\pi}{4}\right)-1}{cotx-sinx.cosx}=2tan^2x\) khi các biểu thức đều xác định
b) Tìm giá trị của tham số m để bpt \(-1\le\frac{x^2-2x-m}{x^2+2x+2019}< 2\) nghiệm đúng với mọi số thực x
Bài 1. Cho tứ giác ABCD nội tiếp (O), M là trung điểm BD. Chứng minh rằng, nếu AC, AM , là hai đường đẳng giác của góc BAD thì ABCD là tứ giác điều hòa.
CM đẳng thức : \(\dfrac{1+sinx}{1-sinx} + \dfrac{1-sinx}{1+sinx}\) = 2(1+2tan2x)
Cho tam giác ABC có góc nhọn tại A. Vẽ bên ngoài tam giác ABC các tam giác vuông cân đỉnh A là ABD và ACE. Gọi M là trung điểm của BC. Chứng minh rằng AM vuông góc với DE.
Cho tam giác cân DEF (DE=DF) .Gọi M,N lần lượt là trung điểm của DF và DE.
a) chướng minh EM=FN và góc DEM = góc DFN
b)Gọi K là giao điểm của EM và FN .chứng minh KE=KF
C) chứng minh DK là tia phân giác của góc EDF
d) DK kéo dài cắt EK tại H . Chứng minh H là trung điểm của EF
e) chứng minh DH vuông góc EF
cho tam giác ABC vuông ở Acos AH là đường cao,AM là trung tuyến .gọi D là điểm đối xứng với M qua D
a, chứng minh M và E đối xứng với nhau qua AB
b, chứng minh AMBE là hình thoi
c, kẻ HK vuông góc với AB,HI vuông góc với AC chứng minh IK vuông góc với AM
d, gọi S là điểm đối xứng với H qua K chứng minh B,S E thẳng hàng
Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của 𝐵𝐴𝐶
Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K ∈ BC). a) Chứng minh rằng KB = KC và 𝐵𝐴𝐾 ̂ =𝐶𝐴𝐾 ̂ b) Tính độ dài AK c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC). Chứng minh rằng ∆KDE là tam giác cân. d) Chứng minh rằng DE//BC e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng MC vuông góc với BC
Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho BD = BC a) Chứng minh rằng 𝐵𝐴𝐶 ̂ = 𝐵𝐴𝐷 ̂ b) Tính độ dài CD biết AB = 4cm, AC = 5 cm c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD). ∆HBE là tam giác gì? Tại sao? d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều
Hãy chứng minh là tam giác cân