HN

Chứng minh các bất đẳng thức: x^2 + y^2 +1 lớn hơn hoặc bằng xy + x + y

CM
4 tháng 4 2015 lúc 21:19

Áp dụng BĐT Cô-si a2+b2>=2ab, ta đc:

x^2+y^2>=2.x.y=2xy

x^2+1>=2.x.1=2x

y^2+1>=2.y.1=2y

Cộng vế theo vế ba BĐT trên, ta đc: x^2+y^2+x^2+1+y^2+1>=2xy+2x+2y

(=) 2(x^2+y^2+1)>=2(xy+x+y)

(=)x^2+y^2+1>=xy+x+y.

Bình luận (0)
NT
4 tháng 4 2015 lúc 21:31

Ta có : x^2 + y^2 +1 >= xy +x +y

   <=> 2(x^2+y^2 +1) >=2 ( xy+x+y)     (*nhân 2 vào cả 2 vế)

    <=> 2x^2+2y^2+2 >= 2xy+2x+2y

   <=> 2x^2+2y^2+2-2xy-2x-2y >= 0

    <=> x^2-2xy+y^2+x^2-2x+1+y^2-2y+1 >=0

<=> (x-y)^2 + ( x-1)^2 +(y-1)^2 >= 0

+ Với x,y thì  (x-y)^2 >= 0;(x-1)^2>=0;(y-1)^2>=0 nên ...(ghi lại dòng trên) 

Vậy : x^2 +y^2+1 >= xy+x+y

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
HN
Xem chi tiết
TH
Xem chi tiết
NL
Xem chi tiết
DY
Xem chi tiết
Xem chi tiết
NN
Xem chi tiết
LN
Xem chi tiết
NN
Xem chi tiết