Ôn tập cuối năm phần số học

SV

Chứng minh các bất đẳng thức :

Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc. Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :

\frac{a}{b+c} +\frac{b}{a+c} +\frac{c}{a+b} <2

MD
21 tháng 5 2017 lúc 9:09

1) Ta có: a + b + c = 0 <=> \(a+b=-c\)

=> \(\left(a+b\right)^3=-c^3\)

=> \(a^3+3ab\left(a+b\right)+b^3\) = \(-c^3\)

=> \(a^3+b^3+c^3=-3ab\left(a+b\right)\)

=> \(a^3+b^3+c^3=-3ab.\left(-c\right)\) ( Vì \(a+b=-c\))

=> \(a^3+b^3+c^3=3abc\) => đpcm

Bình luận (0)
MD
21 tháng 5 2017 lúc 9:15

2) Vì a,b,c là độ dài 3 cạnh của tam giác

=> a,b,c > 0 và a < b+c ; b < a+ c ; c < a+ b

Ta có: \(\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}\) = \(\dfrac{2a}{a+b+c}\) ( b + c > 0; a >0)

\(\dfrac{b}{a+c}< \dfrac{b+b}{a+c+b}\) = \(\dfrac{2b}{a+b+c}\) ( a + c > 0; b > 0)

\(\dfrac{c}{a+b}< \dfrac{c+c}{a+b+c}\) = \(\dfrac{2c}{a+b+c}\) ( a + b >0; c > 0)

=> \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\) < \(\dfrac{2a+2b+2c}{a+b+c}\) = \(\dfrac{2\left(a+b+c\right)}{a+b+c}\) = 2

=> đpcm

Bình luận (4)

Các câu hỏi tương tự
VH
Xem chi tiết
NH
Xem chi tiết
CM
Xem chi tiết
QL
Xem chi tiết
HA
Xem chi tiết
AD
Xem chi tiết
TF
Xem chi tiết
H24
Xem chi tiết
MM
Xem chi tiết