thiếu điều kiện nhé bạn với a=0 thì b3/a ko có nghĩa
thiếu điều kiện nhé bạn với a=0 thì b3/a ko có nghĩa
Chứng minh bất đẳng thức : \(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{c+a}{c^2+a^2}\)\(\forall a,b,c>0;a+b+c=ab+ac+ca\)
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Chứng minh bất đẳng thức \(a^4+b^4\ge a^3b+ab^3\)
1, cho a,b,c ≥0 chứng minh các bất đẳng thức sau:
a, (a+b)(b+c)(c+a) ≥ 8abc
b, \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c,vớia+b+c>0\)
c, \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}vớia,b,c>0\)
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Chứng minh các bất đẳng thức sau:
a/ \(ab\le\left(\dfrac{a+b}{2}\right)^2\)
b/ \(x^4+3\ge4x\)
Chứng minh bất đẳng thức:
\(a^{^{ }2}+b^2+c^2+\dfrac{3}{4}\ge a+b+c\)
Bài 1. Cho a, b, c ³ 0. Chứng minh các bất đẳng thức sau:
Bài 2. Cho a, b, c ³ 0. Chứng minh các bất đẳng thức sau:
Bài 3. Cho a, b, c > 0. Chứng minh các bất đẳng thức sau:
. Cho a, b, c là các số thực dương có tổng bằng 3.
Chứng minh rằng : \(\sqrt{ab+c}+\sqrt{bc+a}+\sqrt{ca+b}\ge3\sqrt{2abc}\)