nếu bạn dùng được bất đẳng thức cô-si cho hai số ko âm
\(\frac{x}{y}\)+\(\frac{y}{x}\)>=2\(\sqrt{\frac{x}{y}\frac{y}{x}}\)
<=>\(\frac{x}{y}\)+\(\frac{y}{x}\)>=2\(\sqrt{1}\)=2
đây là cách lớp 9 nên ko bt bạn làm đc ko??????
Không mất tính tổng quát,giả sử \(x\ge y\) (x và y không âm)
Đặt \(x=y+m\left(m\ge0\right)\).Ta có:
\(\frac{x}{y}+\frac{y}{x}=\frac{y+m}{y}+\frac{y}{y+m}=1+\frac{m}{y}+\frac{y}{y+m}\)
\(\ge1+\frac{m}{y+m}+\frac{y}{y+m}=1+\frac{m+y}{y+m}=1+1=2^{\left(đpcm\right)}\)
P/s: Đây là cách lớp 7,chắc áp dụng được nhỉ?
Thêm đk: x,y>0
Áp dụng BĐT AM-GM ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2.1=2\)
đpcm
tth làm dài.
Áp dụng BĐT cauchy ta được:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)
Bất đẳng thức được chứng minh_._
Forever Miss You do không biết lớp 8 đã học AM-GM hay chưa? Nếu chưa học thì đành dùng cách lớp 6:v