NQ

Chứng minh bất đẳng thức: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\) với mọi a, b

 

Ta có : \(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow a^2+b^2-2ab\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge2ab+a^2+b^2=\left(a+b\right)^2\left(1\right)\)

Chia cả 2 vế của \(\left(1\right)\)cho 4 , ta được :

\(\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}=\left(\frac{a+b}{2}\right)^2\)

\(\Rightarrowđpcm\)

Bình luận (0)
 Khách vãng lai đã xóa