MQ

chứng minh bất đẳng thức : a2+b2+c\(\ge\) ab+bc+ca 

SH
10 tháng 3 2015 lúc 21:08

Ta có (a-b)​​luôn lớn hơn bằng 0 với mọi a, b.
Có (b-c)2 luôn lớn hơn bằng 0 với mọi b,c.
Có (c-a)luôn lớn hơn bằng 0 với mọi c, a.
Suy ra: (a-b)2 + (b-c)2 + (c-a)2 luôn lớn hơn bằng 0 với mọi a, b, c.
=> a- 2ab + b2 + b2 - 2bc + c2 + c2 - 2ac + aluôn lớn hơn bằng 0.
=> 2(a2 + b2 + c2) - 2(ab + bc + ca) luôn lớn hơn bằng 0.
=> 2(a2 + b2 + c2) luôn lớn hơn bằng 2(ab + bc + ca).
=> a2 + b+ cluôn lớn hơn bằng ab + bc + ca.
 

Bình luận (0)