A2=20122+2012220132+20132
A2=(2013-1)2+20132+2012220132
A2=2.20132-2.2013+1+2012220132
A2=2012220132+2.2013(2013-1)+1
A2=(2012.2013+1)2 \(\Rightarrow\)A=2012.2013+1 la so tu nhien
A2=20122+2012220132+20132
A2=(2013-1)2+20132+2012220132
A2=2.20132-2.2013+1+2012220132
A2=2012220132+2.2013(2013-1)+1
A2=(2012.2013+1)2 \(\Rightarrow\)A=2012.2013+1 la so tu nhien
chứng minh : \(\sqrt{2012^2+2012^2\cdot2013^2+2013^2}\) là số tự nhiên
Chứng minh \(\sqrt{2012^2+2013^2.2012^2+2013^2}\) là 1 số tự nhiên
Cho biểu thức: \(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\). CMR A là 1 số tự nhiên ?
\(S=\sqrt{1+2010^2+\frac{2010^2}{2011^2}}+\frac{2010}{2011}+\sqrt{1+2011^2+\frac{2011^2}{2012^2}}+\frac{2011}{2012}+\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
Chứng minh: \(\frac{1}{2\cdot\sqrt{1}}+\frac{1}{3\cdot\sqrt{2}}+\frac{1}{4\cdot\sqrt{3}}+...+\frac{1}{2012\cdot\sqrt{2011}}+\frac{1}{2013\cdot\sqrt{2012}}\)\(< 2\)
Chứng minh: A=\(\frac{1}{3\cdot\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\cdot\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{97\cdot\left(\sqrt{48}+\sqrt{49}\right)}\)\(< \frac{1}{2}\)
Giải phương trình :a,\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
b,\(\sqrt{x^2 +1-2x}+\sqrt{x^2+4-4x}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
c,\(x^2-x-1=\sqrt{8x+1}\)
rút gọn bt :
\(\sqrt{2013+2\sqrt{2012}}-\sqrt{2013-2\sqrt{2012}}\)
1.giải phương trình
\(x^2\)-13x+50=4\(\sqrt{x-3}\)
2. a) cm : A= \(\sqrt{2012^2+2012^2\times2013^2+2013^2}\)là 1 số tự nhiên
b) cm : B=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2010}}\)>86
3. tìm số nguyên x,y thoa mãn :
a) y=\(\sqrt{x^2+4x+5}\)
b) \(x\left(\sqrt{y-1}\right)+y\left(\sqrt{x-1}\right)=xy\)
Tính \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2013\sqrt{2012}+2012\sqrt{2013}}\)