VT = (ac)2 + 2abcd + (bd)2 + (ad)2 - 2abcd + (bc)2 = a2c2 + b2d2 + a2d2 +b2c2 =a2(c2+d2) + b2(c2+d2) = (a2+b2)(c2 +d2) =VP ( dpcm)
Ta co :
(a^2+b^2)(c^2+d^2)
=a^2c^2 + a^2d^2 + c^2b^2 + b^2d^2 + 2abcd - 2abcd
= (ac+bd)^2+(ad-bc)^2
=>(ac+bd)^2+(ab-bc)^2=(a^2+b^2)(c^2+d^2)
****
(ac+bd)2+(ad-bc)2
=a2c2+2abcd+bd2+a2d2-2abcd+b2c2
=(ac)2+(bd)2+(ad)2+(bc)2
(a2+b2)(c2+d2)=(a2+b2)c2+(a2+b2)d2
=(ac)2+(bc)2+(ad)2+(bd)2
=>đpcm