\(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\ge0\)
\(\Leftrightarrow a^2-ab+b^2-bc+c^2-ac\ge0\)
\(\Leftrightarrow2a^2-2ab+2b^2-2bc+2c^2-2ac\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Vậy \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\ge0\)