Tính góc C của tam giác ABC biết c4 -2(a2+b2)c2+a4+a2b2 +b4=0
Cho a, b, c là độ dài ba cạnh của một tam giác.
a) Chứng minh (b - c)2 < a2
b) Từ đó suy ra: a2 + b2 + c2 < 2(ab + bc + ca)
Cho tam giác ABC có a = BC, b = CA, c = AB, a b = c 2 . . Khẳng định nào sau đây đúng?
A. sin A sin B = s i n 2 C
B. sin A sin B = 2 s i n 2 C
C. sin A sin B = 4 s i n 2 C
D. 2 sin A sin B = s i n 2 C
Trên trục x'Ox cho 4 điểm M,A,B,C : CHỨNG MINH
\(\overrightarrow{MA}^2.\overrightarrow{BC}+\overrightarrow{MB}^2.\overrightarrow{CA}+\overrightarrow{MC}^2.\overrightarrow{AB}+\overrightarrow{AB}.\overrightarrow{BC}.\overrightarrow{CA}=\overrightarrow{0}\)
cho 3 số thực dương a,b,c. chứng minh
\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)
$\rm Cho\ a,b,c \ge 0 .Thoả \ mãn \ ab+bc+ac=abc .Chứng \ minh\ a^{2}+b^{2}+c^{2}+5abc \ge 8$
`b)` Cho` a,b,c>=0,ab+bc+ca+abc=4`
CMR:`a^2+b^2+c^2+5abc>=8`
Cho a,b,c là các số thực dương bất kì, chứng minh rằng:
\(\dfrac{\sqrt{bc}}{a+3\sqrt{bc}}+\dfrac{\sqrt{ca}}{b+3\sqrt{ca}}+\dfrac{\sqrt{ab}}{c+3\sqrt{ab}}\le\dfrac{3}{4}\)
Cho a, b, c > 0. Chứng minh rằng: \(\sqrt[3]{ab}+\sqrt[3]{bc}+\sqrt[3]{ca}\le\dfrac{2}{3}\left(a+b+c\right)\)
Cho a; b; c > 0 sao cho a+b+c=3. Chứng minh rằng
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)