\(\left(a+3\right)\left(3a+4\right)\)
-Với \(a\) là số lẻ
\(\Rightarrow a+3\) là số chẵn
\(\Rightarrow\left(a+3\right)\left(3a+4\right)⋮2\left(1\right)\)
-Với \(a\) là số chẵn
\(\Rightarrow3a⋮2\)
\(\Rightarrow3a+4⋮2\)
\(\Rightarrow\left(a+3\right)\left(3a+4\right)⋮2\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow dpcm\)
Để chứng minh rằng (a+3)(3a+4) chia hết cho 2, ta cần chứng minh rằng tổng của hai số này chia hết cho 2.
Ta có:
(a+3)(3a+4) = 3a^2 + 4a + 9a + 12 = 3a^2 + 13a + 12
Để chứng minh rằng 3a^2 + 13a + 12 chia hết cho 2, ta xét hai trường hợp:
1. Khi a là số chẵn:
Nếu a là số chẵn, ta có thể viết a = 2k, với k là một số nguyên.
Thay a = 2k vào biểu thức 3a^2 + 13a + 12, ta được:
3(2k)^2 + 13(2k) + 12 = 12k^2 + 26k + 12 = 2(6k^2 + 13k + 6)
Vì 6k^2 + 13k + 6 là một số nguyên, nên biểu thức trên chia hết cho 2.
2. Khi a là số lẻ:
Nếu a là số lẻ, ta có thể viết a = 2k + 1, với k là một số nguyên.
Thay a = 2k + 1 vào biểu thức 3a^2 + 13a + 12, ta được:
3(2k + 1)^2 + 13(2k + 1) + 12 = 12k^2 + 30k + 28 = 2(6k^2 + 15k + 14)
Vì 6k^2 + 15k + 14 là một số nguyên, nên biểu thức trên chia hết cho 2.
Vậy, ta đã chứng minh được rằng (a+3)(3a+4) chia hết cho 2.